Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

trans-Dimethanolbis(quinoline-8-carboxylato- $\kappa^2 N$,O)-cobalt(II)

Guang-Bo Che,* Chun-Bo Liu, Yun-Cheng Cui and Chuan-Bi Li

Department of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China

Correspondence e-mail: guangbochejl@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{C-C}) = 0.004 \text{ Å}$ R factor = 0.036 wR factor = 0.089Data-to-parameter ratio = 12.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title complex, $[Co(C_{10}H_6NO_2)_2(CH_4O)_2]$, is a neutral mononuclear complex containing a Co^{II} ion in a six-coordinate environment. The Co^{II} center, located on a crystallographic center of symmetry, displays a slightly distorted octahedral geometry, with two quinoline-8-carboxylate and two methanol ligands in *trans* configurations. The complex molecules are linked together by $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds between methanol molecules and carboxylate groups to form a three-dimensional framework.

Received 16 September 2005 Accepted 30 September 2005 Online 8 October 2005

Comment

Quinoline-8-carboxylic acid is known to be a potent chelator of transition metal and lanthanide ions. Its metal complexes have been investigated for a long time, with regard to their preparation (Seminara & Musumeci, 1977; Gomez Beltran & Alfaro Lozano, 1974), antitumor activity (Lumme *et al.*, 1984), electrochemical properties (Park *et al.*, 2000), and so on. However, reports on the crystal structures of complexes with quinoline-8-carboxylate are rare (Kuang *et al.*, 2002). Here we report the crystal structure of a quinoline-8-carboxylato-cobalt(II) complex, (I).

As shown in Fig. 1, the molecule of (I) is centrosymmetric. The $\mathrm{Co^{II}}$ atom occupies the center of a slightly distorted octahedron. The two quinoline-8-carboxylate ligands chelate the $\mathrm{Co^{II}}$ ion through the N and one O atom to form the equatorial plane, and two methanol molecules complete the octahedron at the axial positions. The quinoline-8-carboxylate ligand and the $\mathrm{Co^{II}}$ atom form a six-membered chelate ring, which is almost coplanar with the quinoline ring [the dihedral angle is $3.2~(1)^\circ$]. The $\mathrm{Co1}-\mathrm{O3}$ distance is slightly longer than the $\mathrm{Co1}-\mathrm{O1}$ distance (Table 1). The carboxyl group of the quinolinecarboxylate ligand is ionized and almost coplanar with the plane defined by the aromatic system [the dihedral angle is $9.8~(2)^\circ$].

In the crystal structure, the complex molecules are linked through $O-H\cdots O$ hydrogen-bonding interactions between the uncoordinated carboxyl O atoms and the hydroxyl H atoms of methanol molecules, and $C-H\cdots O$ hydrogen bonds (Table 2) to form a three-dimensional framework.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

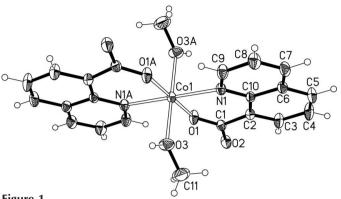


Figure 1 The structure of (I). Displacement ellipsoids are drawn at the 30% probability level. Atoms labelled with the suffix A are at the symmetry position (1 - x, -y, -z).

Experimental

A solution of $Co(NO_3)_2 \cdot 6H_2O$ (59.0 mg, 0.2 mmol) in MeOH (10 ml) was added to a solution of quinoline-8-carboxylic acid (69.3 mg, 0.4 mmol) in MeOH (30 ml) in the presence Et_3N . The resulting solution was filtered and left to stand at room temperature. Single crystals suitable for X-ray analysis were obtained after 14 d.

1822 independent reflections 1584 reflections with $I > 2\sigma(I)$

 $R_{\rm int}=0.032$

 $\theta_{\text{max}} = 25.5^{\circ}$ $h = -9 \rightarrow 12$

 $k = -10 \rightarrow 10$

 $l = -14 \rightarrow 14$

Crystal data

$[Co(C_{10}H_6NO_2)_2(CH_4O)_2]$	$D_x = 1.554 \text{ Mg m}^{-3}$
$M_r = 467.33$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 742
a = 9.912 (1) Å	reflections
b = 8.740 (2) Å	$\theta = 2.3 – 28.5^{\circ}$
c = 11.689 (3) Å	$\mu = 0.90 \text{ mm}^{-1}$
$\beta = 99.51 (3)^{\circ}$	T = 293 (2) K
$V = 998.7 (4) \text{ Å}^3$	Block, pink
Z = 2	$0.20 \times 0.18 \times 0.18 \text{ mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\min} = 0.835, T_{\max} = 0.894$
6016 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0396P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.036$	+ 0.5484P]
$wR(F^2) = 0.089$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\rm max} = 0.001$
1822 reflections	$\Delta \rho_{\text{max}} = 0.25 \text{ e Å}^{-3}$
142 parameters	$\Delta \rho_{\min} = -0.23 \text{ e Å}^{-3}$
H-atom parameters constrained	

Table 1 Selected geometric parameters (Å, °).

5 (3)
2 (3)
1 (3)
.52 (7)
5.58 (7)
3.48 (7)
) ` `
3

Symmetry code: (i) -x + 1, -y, -z.

 Table 2

 Hydrogen-bond geometry (Å, °).

D $ H$ $\cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$\begin{array}{c} O3-H3B\cdots O2^{ii} \\ C5-H5A\cdots O2^{iii} \\ C9-H9A\cdots O1^{i} \end{array}$	0.93	1.75	2.645 (3)	160
	0.93	2.57	3.425 (3)	153
	0.93	2.28	2.953 (3)	129

Symmetry codes: (i) -x + 1, -y, -z; (ii) $x - \frac{1}{2}$, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (iii) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, $z - \frac{1}{2}$.

H atoms were placed in idealized positions (O—H = 0.93 Å and C—H = 0.93 or 0.96 Å) and constrained to ride on their parent atoms, with $U_{\rm iso}({\rm H})=1.5U_{\rm eq}({\rm carrier})$ for methyl and hydroxyl H atoms and $1.2U_{\rm eq}({\rm C})$ for others.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SHELXTL* (Bruker, 1998); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97*; molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXTL*.

The authors thank Jilin Normal University for supporting this work.

References

Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.

Gomez Beltran, F. & Alfaro Lozano, T. (1974). Rev. Acad. Cienc. Exactas Fis. Quim. Nat. 29, 229–240.

Kuang, S.-M., Fanwick, P. E. & Walton, R. A. (2002). Inorg. Chim. Acta, 338, 219–227.

Lumme, P., Elo, H. & Janne, J. (1984). *Inorg. Chim. Acta*, **92**, 241–251.
Park, J. Y., Choi, D. S., Kim, Y. K. & Ha, Y. (2000). *J. Korean Chem. Soc.* **44**, 243–248.

Seminara, A. & Musumeci, A. (1977). J. Inorg. Nucl. Chem. 39, 599–605.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.