Acta Crystallographica Section E

## Structure Reports <br> Online

ISSN 1600-5368

## Guang-Bo Che,* Chun-Bo Liu, Yun-Cheng Cui and Chuan-Bi Li

Department of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China

Correspondence e-mail:
guangbochejl@yahoo.com

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
$R$ factor $=0.036$
$w R$ factor $=0.089$
Data-to-parameter ratio $=12.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

## trans-Dimethanolbis(quinoline-8-carboxylato- $\kappa^{2} N, O$ )cobalt(II)

The title complex, $\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{CH}_{4} \mathrm{O}\right)_{2}\right]$, is a neutral mononuclear complex containing a $\mathrm{Co}^{\mathrm{II}}$ ion in a sixcoordinate environment. The $\mathrm{Co}^{\mathrm{II}}$ center, located on a crystallographic center of symmetry, displays a slightly distorted octahedral geometry, with two quinoline-8-carboxylate and two methanol ligands in trans configurations. The complex molecules are linked together by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between methanol molecules and carboxylate groups to form a three-dimensional framework.

## Comment

Quinoline-8-carboxylic acid is known to be a potent chelator of transition metal and lanthanide ions. Its metal complexes have been investigated for a long time, with regard to their preparation (Seminara \& Musumeci, 1977; Gomez Beltran \& Alfaro Lozano, 1974), antitumor activity (Lumme et al., 1984), electrochemical properties (Park et al., 2000), and so on. However, reports on the crystal structures of complexes with quinoline-8-carboxylate are rare (Kuang et al., 2002). Here we report the crystal structure of a quinoline-8-carboxylatocobalt(II) complex, (I).

(I)

As shown in Fig. 1, the molecule of (I) is centrosymmetric. The $\mathrm{Co}^{\text {II }}$ atom occupies the center of a slightly distorted octahedron. The two quinoline-8-carboxylate ligands chelate the $\mathrm{Co}^{\mathrm{II}}$ ion through the N and one O atom to form the equatorial plane, and two methanol molecules complete the octahedron at the axial positions. The quinoline-8-carboxylate ligand and the $\mathrm{Co}^{\mathrm{II}}$ atom form a six-membered chelate ring, which is almost coplanar with the quinoline ring [the dihedral angle is $\left.3.2(1)^{\circ}\right]$. The Co1-O3 distance is slightly longer than the Co1-O1 distance (Table 1). The carboxyl group of the quinolinecarboxylate ligand is ionized and almost coplanar with the plane defined by the aromatic system [the dihedral angle is $\left.9.8(2)^{\circ}\right]$.

In the crystal structure, the complex molecules are linked through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions between the uncoordinated carboxyl O atoms and the hydroxyl H atoms of methanol molecules, and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) to form a three-dimensional framework.

Received 16 September 2005 Accepted 30 September 2005 Online 8 October 2005


Figure 1
The structure of (I). Displacement ellipsoids are drawn at the 30\% probability level. Atoms labelled with the suffix A are at the symmetry position (1-x, $-y,-z$ ).

## Experimental

A solution of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(59.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{ml})$ was added to a solution of quinoline-8-carboxylic acid ( 69.3 mg , 0.4 mmol ) in $\mathrm{MeOH}(30 \mathrm{ml})$ in the presence $\mathrm{Et}_{3} \mathrm{~N}$. The resulting solution was filtered and left to stand at room temperature. Single crystals suitable for X-ray analysis were obtained after 14 d .

## Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{CH}_{4} \mathrm{O}\right)_{2}\right]$
$M_{r}=467.33$
Monoclinic, $P 2_{1} / n$
$a=9.912$ (1) $\AA$
$b=8.740(2) \AA$
$c=11.689$ (3) A
$\beta=99.51$ (3) ${ }^{\circ}$
$V=998.7$ (4) $\AA^{3}$
$Z=2$

## Data collection

Bruker SMART CCD area-detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\text {min }}=0.835, T_{\text {max }}=0.894$
6016 measured reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.089$
$S=1.09$
1822 reflections
142 parameters
H-atom parameters constrained
$D_{x}=1.554 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 742 reflections
$\theta=2.3-28.5^{\circ}$
$\mu=0.90 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, pink
$0.20 \times 0.18 \times 0.18 \mathrm{~mm}$

1822 independent reflections
1584 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=25.5^{\circ}$
$h=-9 \rightarrow 12$
$k=-10 \rightarrow 10$
$l=-14 \rightarrow 14$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0396 P)^{2}\right. \\
& +0.5484 P \text { ] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\text {max }}=0.25 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ( $\AA{ }^{\circ},{ }^{\circ}$ ).

| $\mathrm{Co} 1-\mathrm{O} 1$ | $1.9898(16)$ | $\mathrm{O} 1-\mathrm{C} 1$ | $1.255(3)$ |
| :--- | :---: | :--- | :---: |
| $\mathrm{Co} 1-\mathrm{O} 3$ | $2.1278(17)$ | $\mathrm{O} 2-\mathrm{C} 1$ | $1.242(3)$ |
| $\mathrm{Co} 1-\mathrm{N} 1$ | $2.1699(18)$ | $\mathrm{O} 3-\mathrm{C} 11$ | $1.381(3)$ |
|  |  |  |  |
| $\mathrm{O}^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 1$ | 180 | $\mathrm{O} 3-\mathrm{Co} 1-\mathrm{N} 1$ | $91.52(7)$ |
| $\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 3^{\mathrm{i}}$ | $88.59(8)$ | $\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$ | $93.58(7)$ |
| $\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 3$ | $91.41(8)$ | $\mathrm{O} 3-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$ | $88.48(7)$ |
| $\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1$ | $86.42(7)$ | $\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$ | 180 |

Table 2
Hydrogen-bond geometry ( $\AA,{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| O3-H3B $\cdots \mathrm{O}^{\text {ii }}$ | 0.93 | 1.75 | $2.645(3)$ | 160 |
| C5-H5A $^{\mathrm{ii}} \cdots \mathrm{O}^{\mathrm{iii}}$ | 0.93 | 2.57 | $3.425(3)$ | 153 |
| C9-H9 $^{\mathrm{H}} \cdots \mathrm{O}^{\mathrm{i}}$ | 0.93 | 2.28 | $2.953(3)$ | 129 |

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (iii) $x+\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$.

H atoms were placed in idealized positions $(\mathrm{O}-\mathrm{H}=0.93 \AA$ and $\mathrm{C}-\mathrm{H}=0.93$ or $0.96 \AA$ ) and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}$ (carrier) for methyl and hydroxyl H atoms and $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for others.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

The authors thank Jilin Normal University for supporting this work.

## References

Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Gomez Beltran, F. \& Alfaro Lozano, T. (1974). Rev. Acad. Cienc. Exactas Fis. Quim. Nat. 29, 229-240.
Kuang, S.-M., Fanwick, P. E. \& Walton, R. A. (2002). Inorg. Chim. Acta, 338, 219-227.
Lumme, P., Elo, H. \& Janne, J. (1984). Inorg. Chim. Acta, 92, 241-251.
Park, J. Y., Choi, D. S., Kim, Y. K. \& Ha, Y. (2000). J. Korean Chem. Soc. 44, 243-248.
Seminara, A. \& Musumeci, A. (1977). J. Inorg. Nucl. Chem. 39, 599-605.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

